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The method employed in [1] is used to solve the first fundamental three-dimensional problem of the theory of elasticity for a 
wedge. This consists of reducing it, using a complex Fourier-Kontorovich-Lebedev integral, to a generalized Hilbert boundary- 
value problem, as generalized by Vekua. l~ormulae are given which enable one to calculate the displacement vector and the stress 
tensor completely in a three-dimensional elastic wedge, one face of which is stress-free, while a normal and shear load 
(perpendicular to the edge) act on the other. Using the solution obtained, the contact problem of the motion of a punch on the 
face of an elastic wedge in a direction perpendicular to the wedge edge is considered (in the quasi-static formulation). The punch 
is considerably elongated along the edge of an elliptic paraboloid, and hence it can be assumed approximately that the friction 
forces are collinear with the direction of motion. The effect of the Coulomb friction coefficient on the relation between the 
impressing force and the settlement of the punch for different wedge angles is investigated. The effective stress on the axis of 
symmetry of the contact region is calculated for different wedge angles and as a function of the distance of the punch from 
the wedge edge and also as a function of the direction and value of the friction forces. © 2000 Elsevier Science Ltd. All rights 
reserved. 

The method used below has been employed [2] to solve the problem of the action of a normal load on 
one face of a three-dimensional wedge for various boundary conditions on the other face. This method 
has also been used [3] to obtain a solution of the problem of the action of a normal and shear load 
(perpendicular to ~he edge of the wedge) on one face of a wedge, and an expression has been derived 
for the normal displacement on this face. The formulae obtained below generalize the well-known 
solutions of the Boussinesq and Cerruti problems for a half-space [4], while the formulation of the 
contact problem generalizes the well-known case of the motion of a punch on a half-space [5]. To solve 
the integral equat:ion of the contact problem with unknown contact region the method of non-linear 
boundary integral equations [6,7] is used, which enables one, simultaneously and fairly rapidly, to 
determine the required contact pressures and the contact area. Variational methods, which are more 
universal, were employed to solve three-dimensional contact problems with friction in [8, 9]. The results 
obtained for an elastic wedge are important in applications to Novikov gears [10,11]. 

1. THE T H R E E - D I M E N S I O N A L  P R O B L E M  OF 
THE T H E O R Y  OF E L A S T I C I T Y  FOR A W E D G E  

Consider a three-dimensional elastic wedge with aperture angle ct and elastic characteristics v 
(Poisson's ratio) and G (the shear modulus) in cylindrical coordinates r, q~, z, where the z axis is directed 
along the edge of the wedge so that the system of coordinates is a right-handed system. Suppose the 
face of the wedge q~ = -u/2 is stress-free, while a normal load of intensity q(r, q), distributed over a 
finite region f~, acts on the face q~ = ct/2, while a shear load, perpendicular to the edge of the wedge, 
distributed over the same region and proportional to the normal load with a coefficient of proportionality 
Ix, also acts on this face. We will assume, for simplicity, that the region ~ is symmetrical about the 
semiaxis z = 0 and q(r, -z) = q(r, -z). We will write the boundary conditions in the form 

q~ = - ~ / 2  : o~ =xr~ =x~z =0 

q~=a /2 :  o~=-q(r,z) ,  x,~ =-p,q(r,z) ( r , z ) ~  (1.1) 

o ~ = x , ¢ = 0  (r,z)~f~; %z=O 
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148 D.A.  Pozharskii 

In addition, the stresses on the wedge vanish at infinity. The solution of the Lamd equilibrium equations 
in r, cp, z coordinates can be expressed in terms of three arbitrary harmonic functions On = On(r, q~, z) 
(n = 0, 1, 2) by the formulae [1, 2] 

3(I) o I a 
u,= ar +4(l-v-----~ ar ( r t ° j ) - ° h '  ¢ % = s i n q ~ - c ° s q ~ 2  

I a~ o ] ao~ t u~ = - 4 - -  co 2, 0) 2 = cos t l~ ~ + sin 9ti)2 (1.2) 
r oa(I ) 4(I - v) aq:) 

a~o -t r a(o~ 
Uz = az 4 ( ! - v )  az 

Using Hooke's  law, from (1.2) we obtain expressions for the stresses [2, p. 147, formula (2)]. The 
harmonic functions ~ will be sought in the form of Fourier-Kontorovich-Lebedev integrals in the 
complex plane [2, p. 147, formula (3)]. Using a well-known technique [1, 2], we can obtain a solution 
of boundary-value problem (1.1) in the form (1.2), where (we change to real Kontorovich-Lebedev 
integrals, n = 0, 1, 2 and m = 1, 2) 

*.(r,~o.z) = ~ 7 i shxx[An(x'f3)chq~x + Bn(*'f3)shcvc]Ki*(f3r)c°sf3zdxdf3 
7t o 

, ,,. sh(nu / 2 )  i - 2 v  ~ Wl(u)~ltu, p) ~ du 
A°(X'[3)= 13sh(~'c/2) 0 

l - 2 v  " sh(m~ 
B°(x'f3)= 13ch(tzx/2)! W2(u)¥2tu'~) A+(u,z)/2)du 

A(x,~) = RtCx)q(~,[~)-s(~,~ ~Rj(x) + s~(~)] 
L 1 - 2 v  

s,(~,l~) = R2 (~)G (~,13)- S(~,l~-xR2(x) + S2(~)] 
L I - 2 v  

A.(.O. = - , , , . . ]  
S _ rxs~(x) 

S(x,~) = -It I l q(x,y) Ki~f~x)cos~ydxdy 
n G 

F,~(X,[3) = - I  I q(x..,y) Fm(x,~Jx)cos[~ydxdy 
n G 

F,~(~,13x) = [I - laf,,, ( x ) ]  . ~  2(] - v)(1-2v) ch Ki.{(~r.)+ 

la ch~-~ sh~t 
2 ( I -v )  z o h"(t)K#([~x)A-(t,x) dt + 

/ ch(ctx/2) / 2cos(or/2) / sh(~x/2) / 2sin(t~/2) 
RLz(x )'-- + , Stz(x)= 

[sh(axl2)j chotx_cosot " [ch(ctxl2)j chot'c+cosa 

c h a x T  cosa  (1 - 2v)sh ax-T- xsin a 
WL2(X) = + hi.2 (X) = 

sh ctX + xsin ¢t' eh tzx :1: cosct 

+x + 2( l -v ) ( I -2v)s in . .~ ,  A±(u,x)=chnu+eh~tx 
fL2(x) = WL2(x ) ch (X't: :i: cos e( 

(1.3) 
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Here Ki,(x) is the MacDonald function [14]; the upper sign (function) corresponds to the first subscript 
while the lower sign corresponds to the second subscript. The functions ~/~(x, ~) (m = 1, 2) are found 
from the Fredholm integral equations of the second kind (0 ~< x < oo) 

¥~,(x,l~) = (r- 2v)~ Lm(x,u)t¥~(u, ft)+ F~,(u, f3)ldu 
0 

Lm(x,u)= 2ch nXsh 7tu W,(u)~ shmg=(t) dt 
2 2 o A+(t,X)A+(t,u) 

/cth(°~x/2) 1 sin2 ct 

gl'2('C) = [ th(otx / 2) J ch otx ~ cos2ct 

(1.4) 

The formal solution of Eqs (1.4) can be written in the form of functional series in powers of 
(1  - 2v), which converge uniformly in the space of continuous functions, bounded along the semiaxis 
[3]. When performing practical calculations, to solve Eqs (1.4) one must use the method of mechanical 
quadratures and the Gauss quadrature formula [12]. The singular integrals in (1.3) for the functions 
Fro(x, ~x) (m = 1, 2) are calculated by standard regularization after subdividing the infinite interval of 
integration in order to localize the singularity in a finite interval. 

Using (1.2)-(1.41) and Hooke's law one can calculate the displacement vector and the stress tensor 
in the three-dimensional wedge with conditions (1.1). These formulae generalize the well-known 
solutions of the Boussinesq and Cerruti problems for a half-space [4]. 

We will show this for the displacements of the boundary of the half-space by putting ct = It and 
tO = ~/2 in (1.2)-(1.4). When ct = 7t we have 

W~.2(x,l~) -- o, Wl(x)=cth ~-f-~ W2(x)=-th~-~- x, f1(x)=xth.--~- ~ 
2' 2 2 

f2(x)=xcth x--~-x h t (x )=( l -2v ) th -  ~ ,  h2(x)=(i-2v)cth x--~-~ 
2 '  2 

and for the normal displacement on the boundary of the half-space we obtain the expression 

u~ = - J  j; q(x,y) V(x,y,r,z)dxdy, 0 =---~-G 
n 0 I - v  

V(x,y,r,z)= ~ 77 chrcuKiu(~r)Kiu(~r)c°s~yc°s~za~ u + 
O0 

l.tO-2v) 77 [ shTtu cth-~ff'7 th ~tshrtt Kit(~x)dt+ 

r,,mx, a, lr,,,(a,)cosaycosa dr, d.= !1(!- 2v)(r-  X) 

2 j 20-v) 2o 

(1.5) 

(1.6) 

-'-f '--+ '--I, ~m=4~x~Rm_ R~') g+=[(r-x)2+(z:i:Y)2]~ 

which agrees, taking the evenness of the problem with respect to z into account, with the well-known 
formulae [4, pp. 276 and 279 when z = 0]; not that in [4, Fig. 9.4] the unit vector e z is directed opposite 
to the unit vector % introduced above and was chosen to be in the opposite direction to the shear load). 
When calculating the quadratures in (1.6) one must use formulae 2.5.30.8 [13], 2.16.14.4 (with v = 0, 
omitting the quantity c in the argument of the MacDonald function), 2.16.48.20 and 2.16.52.6 [14], and 
also the value of l~he integral ([3 > 0) 

th u cos(l~r sh u) sin(~oc sh u)du = 4 (sgn(x - r)e -pLt-rl + e -pl~+rl) (1.7) 
0 
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and the fact that, for the odd function W(u) 

~W(u)shrcu I ~_~ ~_s gu . 2 du = c h -  W(u)thxsmxucosxtdxdu = 
0 A (u,t) r i c h ( t / 2 )  2 

_ I ~ ~ shff-~UW(u)thxcosxusinxtdxdu 
nsh(nt / 2) ~ 2 

(1.8) 

The representations of the singular integral (1.8) are proved using a Fourier integral transformation. 
Similarly, taking into account the value of the integral 

*7.j ushrcuKiu(X) d u = xKi,(x) (1.9) 
o a+(u,t) 

we find that when o~ = n and q0 = rd2 

,_2v i i i  ~(x ,y , r , z )= g3(l-V) 

~t[X + (l - 2V)2 (r - x)] 
+ 4(1 - v) 2 ~! 

q(x, y.). ~(x,  y, r, z)dxdy 
0 

ch mch 7tu + 1 Ki t (~r)Ki u (ltx) cos ~z cos ~y d~ltdu + 
~+(t,u) f~ 

to I = sin ~- Ol (r,~-, z) = idxdy 

(1.10) 

The integral with respect to the variable [3 diverges, but here, according to expression (1.2), we require 
the partial derivatives of q~0 with respect to r and z, which are calculated using representations 9.6.22 
[12], the relation 

ch rot ch rcu + I = 4 ch 2 nt ch 2 ~ u  _ (ch gt + ch 7tu) 
2 2 

(1.11) 

and the values of the integrals 2.5.6.4, 2.5.48.2 [13] and 2.16.48.1 [14]. As a result, we have on the 
boundary of the half-space 

llr =--II q(x'Y) u(x,y,r,z)dxdy, uz = - ] ]  q(x,y) W(x,y,r,z)dxdy 
n 0 n 0 

(1 - 2v) ( r -  f v ( r -x)2  ~3 ] !  - - ' - " " ~  U(x,y ,r ,z)= ~ - ~ - v ;  x) ~2 +lJ. ~ ,+  

W(x, y, r, z) = (I - 2v)(z - y) ~2 ÷ lav(r - x)(z - y) ~3 
2(I - v) 1 - v 

(1.12) 

which is identical with well-known formulae ([4, pp.276 and 279 with z = 0]; note that in [4] (Fig. 9.4) 
the unit vectors ex and ey coincide with the unit vectors er and e z introduced above, respectively). 

2. T H E  CONTACT P R O B L E M  FOR A W E D G E  

We will investigate the quasi-static contact problem when a rigid punch, initially imbedded into the 
face of an elastic wedge, begins to move fairly slowly along this face (without inclination) in a direction 
perpendicular to the edge of the wedge. The punch is an elliptic paraboloid highly prolate along the 
edge, and hence it can be assumed approximately that the friction forces are collinear with the direction 
of motion (and directed opposite to it). "I'ne formulation of the problem extends the well-known case 
of the motion of a punch over a half-space [5] to the case of a wedge of aperture angle a, one face of 
which is stress-free. The problem is symmetrical about the z coordinate. 
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We will use the solution of boundary-value problem (1.1) obtained above. By satisfying the boundary 
condition of contact between the bodies u,(r, ~q2, z) = -[8 - f ( r ,  z)], (r, z) 6 f~, where 8 is the settlement 
of the punch and f(r, z) = (r - a)Z/(2R1) + z2/(2R2) is the shape of the punch base (R1 ~ R2), and of 
the relatively unknown normal contact pressure o~(r, a/2, z) = -q(r, z) in the unknown contact area 
(r, z) ~ ~2, we obtain the following integral equation (see also formula (4) in [3]) 

I I  q(x,y)  - I t  ÷K(x,y ,r ,z)  dxdy=27tO[~-f(r ,z)]  
D 2 ( I - v )  R z 

4 ~ rcu 
K(x, y, r, z) = _-T J J sh -7- W(u, ~3x)Ki, , (~r)cos ~(y - z)d~du 

O0 Z 

• 

W(u, fJx)= Wl(u)~l(u,~Jx ) - W2(u)V*2(u,~ax)+ 2azh Ki,(~x)[Wo(u ) - 

(2.1) 
I x ch/tu ~ {Wl(u)hl(, ) -  W2(u)h2(t ) -  - cth gu + laf°(u)] + 2(1 - v) 2 o 

-( i  - 2v) cth th + th cth sh 7tt A( t ,u )  

sh 2czu + u sin 2~ 2u sin 2 ct 
I%(u)= eh2{xu_2u2sin2oc_l,  f0(u)= ch2~.u_2u2sin2~_ 1 

The functions ~ , ( u ,  [3x) (m = 1, 2) satisfy the Fredholm integral equations of the second kind (1.4), 
in which, instead of the functions F',,(u, fS) we must substitute the functions F,,(u, ~ )  (1.3). In the kernel 
of integral equation (2.1), using formulae (1.6), we can explicitly separate out the singular part to improve 
the convergence of the integrals. When the Coulomb friction coefficient It > 0, the punch begins to 
move towards the edge of the wedge, and when It < 0 it begins to move away from the edge. When 
ot = ~ Eq. (2.1) is identical with Eq.(3) [5] (taking into account the fact that the motion is in the negative 
direction of the r axis when ~t > 0). 

To solve integral equation (2.1) with the condition q(r, z) = O, (r, Z) e 392, we will use the method of 
non-linear boundary integral equations [6, 7], which enables us to determine the normal contact pressures 
and the contact area simultaneously. The main properties of the integral operator, generated by the kernel 
of Eq.(2.1) when bt = 0 [7] (strict positiveness and complete continuity) are also preserved when ~ ,  0 
(this was pointed out previously in [6, p.19] for the case a = re). Hence, the well-known results concerning 
the existence and uniqueness and a method of constructing the solution of Eq.(2.1) when It = 0 [7], can 
be transferred completely to the case of calculating the friction forces being considered here. 

We will further use the dimensionless notation (2.1) [7] (we omit the primes, see also the paragraph 
following formulae (2.1) [7]). The calculation were carried out for angles ot = 70 °, 90 °, 110 ° and 180 °. 

An analysis of the results shows that when ~ = 180 ° the value of P(8) [7] is practically independent 
of It. This can be explained as follows. When cz = 180 ° the solution of Eq.(2.1) can be sought in the 
form of a series in powers of the small parameter e. = It(1 - 2v)/(2 - 2v) [5]. Dropping terms of the 
order of e z, (when It = 0.2 and v =0.3 we have e2. = 0.003), we obtain q(r, z) = qo(r, z) -T- ~.qa(r, z) + 
O(e.z), where the minus (plus) sign is taken for the case when the punch moves in the positive (negative) 
direction of the r axis. The function qo(r, z) satisfies the integral equation of the contact problem for a 
half-space without friction, and the function ql(r, z) is expressed in terms of this function (irrespective 
of E.). The normal force P (the integral of the function q(r, z) over the area ~),  is obviously independent 
of the direction of motion of the punch in the half-space. Hence it is clear that the integral of the function 
q~(r, z) over the contact area must be equal to zero. Hence, the order of the terms which describe the 
effect of the friction forces in the relation P(8) will be o(e.). 

Friction Will have a considerable effect on the eccentricity of the normal force (and on the moment), 
which ensures motion of the punch without inclination. We know that, in the case of the 
axisymmetrical contact problem with friction [15], the friction forces generally have no effect on the 
relation P(8) (two independent strain and stress systems were obtained: from one of these the normal 
force, which is independent of Ix, is obtained, and from the other the moment, which depends on the 
friction). The smaUer the angle of the wedge the more appreciable is the effect of friction and the 
direction of motion on the relation P(8). 

o 3 In Table 1 (the quadrant ec = 90 ) we show values of the normal force P × 10 as a function of the 
settlement 8 × 10 ° for different friction coefficients It. Here, in the notation employed earlier [7] 
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Table 1 

p 5 x I 0 :~ = 4 4.5 5 5.5 6 6.5 

-0.2 
-0.1 
0 
0.1 
0.2 

0.53 I 
0.510 
0.49 I 
0.474 
0.457 

0.632 
0.605 
0.581 
0.559 
0.539 

0.740 
0.708 
0.678 
0.650 
0.625 

0.849 
0.812 
0.777 
0.746 
0.716 

0.965 
0.920 
0.879 
0.841 
0.808 

1.09 
1.03 
0.986 
0.942 
0.903 

A = 0.1, B = 0.005, e = 0.15, X = 1 and v = 0.3 (? = 0). 
The closer the punch is to the edge of the wedge with aperture angle a < n, i.e. the smaller the value 

of ~, (7), the smaller the value of P(fi), which is due to the increase in the compliance of the elastic material. 
This conclusion, which is well known when there is no friction [7], still holds for fixed Ix ~ 0. If the punch 
moves towards the edge of the wedge (IX > 0; the value of~, is fixed), the value of P(8) is less (the punch 
is easier to press in), than when Ix = 0 and with the same value of~.. If the punch recedes from the edge 
(Ix < 0; the value of~. is fixed), the value of P(5) is greater than when Ix = 0 and with the same value of 
~.. This increase in the force when Ix < 0 occurs due to the increase in the maximum normal contact 
pressure; the contact area when Ix, < 0 may be less than when Ix = 0, which in turn is less than the area 
of the region f2 when Ix > 0 (for example, when a = 70 °, ~. ~ 0, ~ × 103 = 6.5 and the values of the 
remaining parameters as in the table). When ~5 = co n s t  the motion of the punch in the direction of the 
edge of the wedge (Ix > 0) prevents breaking down the contact in the neighbourhood of the edge (the 
edge moves away from the punch), observed when Ix = 0 and ~, ~ 0 for fairly acute angles a [7]. 

3. A N A L Y S I S  OF T H E  E F F E C T I V E  S T R E S S  

After solving the contact problem with a specified function q(r, z) and contact area D it is possible 
to determine the important role played in applications [10,11] of the dimensionless effective stress ae 
= oJ(2n0). Using the optical analogy method it was established in [15, p. 67] that for friction under a 
smooth punch the zone of maximum shear stresses rises close to the boundary of the elastic half-plane. 
As an example (within the framework of the idea of surface strength) we will calculate o~ on the axis 
of symmetry of the contact area using the first formula of (3.1) [7] and the following formulae (we omit 
the prime, compare with (3.1)-(3.3) in [7]) 

t~e = 2 -I/2[(tYr - O~)2 + (o~ - O z)2 + (O z _ Or)2 . , -2  ,I t2 "i" O';r~ j (3.1) 

Ur=~-vt'-~'r + ~Z )+ ~r l----V q(r'O)' ff,=-q(r.O) 

v (~u, bu.) ~u. 
< , ,  = - q(r,O), "c,i p =-lJ.q(r,O) 

03u. 1 - 2v ~' . ' .  
3r = -_'S5"- ] J J El (~,t,u)K,(~J, t, ro)d~dt du - 

1~ 0 0 0  

- - ~  i i  E2 (~J.t ( -~  K.(~J.t. ro ) + (l - 2v) Re Kl +# (~Jro )]d~J dt - 

_Q(ro)_( l_2v)q( r ,O ) IX(I- v) ~ 1 
"~ [(ro _X)2 +y2]1#2 q(x,y)dxdy 

03z o o o  

ro S J E2([i,t)~Ki,(~ro)d~dt +Q(ro ) 
+2~3 oo 

= l - 2 v  f[ y 03 
Q(r°) 2~ ~(ro-X)2+y 2 ~yq(X.y)dxdy+ 

(r o -x )y  03 q(x.y)dxdy, r o = 
+ [(ro _ '~ '~y21312 03y [ r+e(~,  ~ E) 
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K. ( [ 3 ,  t, r 0 ) = [3Ki, (13r 0 ) - [t Im K, + i ,  (13r0) - Re K I +i, ([~r0)] / r 0 

= shn.tshnu { at  Vm(u,[3 ) W2(u)t h at ~F2(u,~) 
A+(t,u) .W~(u)cth 2 ch(gu/2) 2 ch(nu/2) 

2 [ ( 1 -  ~tu._th(~u/2)"]Stua,+p.( l -2v)  
- c th  cth--~ 2 ( i -  v ) ( l - 2 v ) )  "' '~'" 2(1-v)  

× 

x~thnXsh~r'ro 2 A_(X,u)S*("~) d x ] _ t h 2 t h 2 [ (  1 

2 ( l - v )  o 2 A_(X,u) J] 

t ch(m / 2)Lsh at  + t sin a 

Ix S t sh 2at - t(1 - 2v) -I sin 2a 
i , , .  

1 - v 

S. (t, 13) = -Jr q(r, z)Kit (~r o) cos ~z dr dz 
fl 

~tu cthOtu/2) .)S (u R~ + 
2 ( I - v ) ( 1 - 2 v ) )  "" .v, 

'e2(t,13) ] _  
s h a t - t s i n a  

eth m]} 

Here all the components of the stress tensor relate to 2re0, and the functions Win(t, [3) (m = 1, 2) are 
found from (1.3), where we must put G = 1. To improve the convergence of the integrals in (3.1) for 
Ou,/Or and OUz/OZ we must explicitly separate out the terms corresponding to the case a = ~, where we 
use the first formula of (3.6) [7], the values of the integrals indicated above and integration by parts. 

For a = n we have E1(13, t, u) ~- E2(13, t) =-- 0 and, integrating by parts, we can show that the stresses 
ar and oz (3.1) on the boundary of the half-space are identical with the well-known formulae [4, 
pp. 277 and 279, for z = 0]. 

If we put ~t = 0 and a = n in (3.1) and assume that the function q(r, z) is defined in the elliptic region 
f~ by (3.4) [7], then at the initial contact point (the centre of the ellipse) we obtain the well-known formula 
(3.5) [7] for ce. For a sufficiently prolate ellipse (this case is also considered here) this value of ae at 
the centre of the ellipse will be a maximum on the contact surface and will considerably exceed the 
value of ae at the edge of the ellipse [16, p. 77]. If the shape of the ellipse ~2 is close to a circle, the 
maximum value of t~ e on the contact surface occurs at the edge of the semi-major axis, but it will only 
slightly exceed the value of a~ at the initial contact point [16, p. 77]. 

8 x W  s 
8 

q 
2.~max o'e x 10 J 

10.2 -03 0 0.1 .I~ 

Fig. 1. 



154 D . A .  Pozharskii 

Figure 1 shows graphs of the settlement 6 x 103 and the maximum effective stress on the axis of 
symmetry of the contact area ts e x 103 for a constant indenting force P x 103 = 0.583 as a function of 
the friction coefficient Ix (and the direction of motion of the punch) for a half-space (the dashed curves) 
and for a wedge with an aperture angle t~ = 110 ° (the continuous curves) for various values of l ,  which 
characterizes the degree of closeness of the punch to the edge of the wedge [7]. The values of the elasticity 
parameters are taken in the table. For a half-space (and for a wedge with values of t and c~ that are 
not too small), when the friction forces are taken into account, max cs e as before is reached at the initial 
contact point, increasing as I Ix I increases. For a constant indenting force close to the edge of the wedge 
(for sufficiently small l )  the point where max tse is reached begins to shift from the initial contact point, 
as a rule, towards the edge of the wedge when Ix < 0 (the friction forces are directed towards the edge) 
and the other way when Ix > 0 (the friction forces are directed away from the edge). When ct = 70 ° 
and ~. = e and values of the other parameters as in the calculations for the figure, contact breaks down 
in the neighbourhood of the edge (due to the considerable increase in the settlement for a constant 
force). 
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